

TABLE	OF	(ON)	FENTS
-------	----	------	-------

PAGE	TOPIC
1	THE NUMBER PROPERTIES
2	CALCULATING SLOPE
3	GRAPHING IN SLOPE-INTERCEPT FORM
4	DETERMINING PARALLEL AND PERPENDICULAR LINES
5	SOLVING MULTI-STEP EQUATIONS
6	SOLVING INEQUALITIES
7	SUBSTITUTION TO SOLVE SYSTEMS OF EQUATIONS
8	FACTORING TRINOMIALS
9	SIMPLIFYING RADICALS
10	OPERATIONS WITH RADICALS
11	CLASSIFYING SEGMENTS, RAYS, and LINES
12	NUMBER OF EDGES & VERTICES
13	ANGLE MEASUREMENTS
14	TYPES OF TRIANGLES
15	TYPES OF QUADRILATERALS
16	PARTS OF A CIRCLE
17	AREA FORMULAS OF BASIC SHAPES
18	VOLUME FORMULAS OF BASIC FIGURES
19	BASIC TRANSFORMATIONS
20	CONGRUENT OR SIMILAR

THE NUMBER PROPERTIES

Match each expression with the property that it shows.

5 + 0 = 5	Commutative Property of Addition
5(1) = 5	Associative Property of Addition
5(0) = 0	Additive Identity
2 + 3 = 3 + 2	Distributive Property
2(3) = 3(2)	Commutative Property of Multiplication
2 + (3 + 4) = (2 + 3) + 4	Associative Property of Multiplication
2(3•4) = (2•3)4	Zero Product Property
3(2 + 5) = 6 + 15	Multiplicative Identity

1

CALCULATING SLOPE

Find the slope between the given points or on the graph.

(1, 3) and (5, 8) (-2, 7) and (5, 4) (1, -3) and (0, 8)

(-1, -9) and (4, 0) (-8, 8) and (-2, 8) (-4, 9) and (-4, -8)

GRAPHING IN SLOPE-INTERCEPT FORM

y = x + 3

y = 2x + 3

y = -2x

y = -x + 3

y = -3x + 3

PARALLEL & PERPENDICULAR

Circle whether each pair of equations is parallel, perpendicular, or neither.

slope:

$$\begin{cases}
y = x + 3 \\
y = x - 2
\end{cases}$$
parallel perpendicular neither
slope:

$$\begin{cases}
y = -x \\
y = x + 4
\end{cases}$$
parallel perpendicular neither
slope:

$$\begin{cases}
2x + 3y = 6 \\
3x - 2y = 4
\end{cases}$$
parallel perpendicular neither
slope:

$$\begin{cases}
4x + y = 6 \\
y = -4x - 2
\end{cases}$$

$$\begin{cases} y = 2x + 3\\ 2x - y = 4 \end{cases}$$

parallel perpendicular neither

slope:

slope:

$$\begin{cases} y = 3x + 3 \\ x - 3y = 9 \end{cases}$$

parallel perpendicular neither

slope:
$$\begin{cases} y = \frac{2}{5}x + 3\\ 2x - 5y = 10 \end{cases}$$

parallel perpendicular neither

parallel perpendicular neither

SOLVING MULTI-STEP EQUATIONS

Solve each equation. Simplify your answer.

$$3(x + 4) = 2.5(x - 6) \qquad 2(x - 5) + 7 = -3(2x - 6)$$

$$\frac{1}{2}(4x - 8) = \frac{3}{4}(8x + 4) \qquad \qquad \frac{1}{2}x + 5 = \frac{2}{5}x - 8$$

$$\frac{2}{3}(5x+6) = \frac{3}{2}(8x-4) \qquad \qquad \frac{1}{3}x + \frac{1}{4} = \frac{2}{3}x - \frac{1}{6}$$

SOLVING INEQUALITIES

Solve the inequalities.

30 + 2x < 17 15 < -4x + 18 $6 \le 4x + 80$

$$10 - 2x \le 17$$
 $-12 > -3x - 12$ $-9 \le -5x - 33$

8 + 2x < -x + 17 $4x - 9 \le 5x + 80$

 $5 - 2x \ge 6(x - 3)$ $-3(3 + x) \le -6x - 11$

SUBSTITUTION TO SOLVE SYSTEMS

Solve each system by substitution.

$$\begin{cases} y = -2x \\ y = x + 3 \end{cases}$$

 $\begin{cases} y = 3x + 3\\ x - 3y = 9 \end{cases}$

$$\begin{cases} 2x + y = 6 \\ x = 2y - 1 \end{cases}$$

$$\begin{cases} y = \frac{2}{5}x + 3\\ 2x - 5y = 10 \end{cases}$$

$$\begin{cases} x = -4 \\ y = 5 \end{cases}$$

$$\begin{cases} 2x + 3y = 6 \\ y = -3x - 1 \end{cases}$$

FACTORING TRINOMIALS

Factor each trinomial.

 $x^{2} + 5x + 4 \qquad x^{2} + 8x + 16 \qquad x^{2} - 6x + 8$ $x^{2} - 6x - 7 \qquad x^{2} + 5x + 6 \qquad x^{2} - 10x + 25$ $2x^{2} + 7x + 3 \qquad 3x^{2} - 13x + 4 \qquad 5x^{2} + 7x - 6$

Solve the polynomial equation.

 $x^2 + 9x = -8$ $2x^2 = 7x - 3$ $3x^2 + 15x = -18$

SIMPLIFYING RADICALS

Simplify each radical expression.

$\sqrt{4}$	$\sqrt{6}$	$\sqrt{8}$	$\sqrt{9}$	$\sqrt{10}$
√ <u>12</u>	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{28}$	√32
$\sqrt{40}$	$\sqrt{48}$	$\sqrt{50}$	$\sqrt{55}$	$\sqrt{60}$
$\sqrt{64}$	√72	√ 90	√ 99	√ <u>120</u>
$\sqrt{150}$	$\sqrt{160}$	$\sqrt{200}$	$\sqrt{256}$	$\sqrt{300}$

OPERATIONS WITH RADICALS

Simplify each radical expression.

 $\sqrt{2} + \sqrt{2}$ $4\sqrt{3} + \sqrt{3}$ $5\sqrt{6} + 2\sqrt{6}$
 $\sqrt{2} - \sqrt{2}$ $4\sqrt{3} - \sqrt{3}$ $5\sqrt{6} - 2\sqrt{6}$
 $\sqrt{2} \cdot \sqrt{2}$ $4\sqrt{3} \cdot \sqrt{3}$ $5\sqrt{6} \cdot 2\sqrt{6}$
 $\sqrt{72} + \sqrt{50}$ $4\sqrt{45} - \sqrt{125}$ $5\sqrt{27} + 2\sqrt{5}$

CLASSIFYING SEGMENTS, RAYS, & LINES

Determine the segments, rays, and lines from the diagram.

SEGMENTS	RAYS	LINES

Determine whether each statement is true or false.

Two lines can intersect at exactly one point.	
Two lines can intersect at exactly two points.	
The are an infinite number of points on a line.	
A ray has an arrow at one end.	
A segment and a line are identical.	

NUMBER OF EDGES & VERTICES

List the number of edges and vertices for each figure.

ANGLE MEASUREMENTS

Circle the type of angle shown and the best approximate measure of the angle.

TYPES OF TRIANGLES

Name the triangle based on its sides and angles. Names include equilateral, isosceles, and scalene, acute, obtuse, and right.

14

TYPES OF QUADRILATERALS

Determine if the quadrilateral is a square, rectangle, rhombus, trapezoid, isosceles trapezoid, parallelogram, or more than one of those names.

15

PARTS OF A CIRCLE

Given the circle, name each part.

Find the circumference and area of each circle.

AREA FORMULAS

Calculate the area of each figure.

parallelogram A = bh

trapezoid A = $\frac{1}{2}h(b_1 + b_2)$

17

VOLUME FORMULAS

Calculate the volume of each figure.

cylinder $V = \pi r^2 h$

sphere V = $\frac{4}{3}\pi r^3$

TRANSFORMATIONS

Determine the type of transformation shown in each diagram as a translation, rotation, reflection, or dilation.

CONGRUENT OR SIMILAR

Determine whether the figures shown are congruent or similar.

